728x90
728x170
De Casteljau Algorithm
Bezier Curve Review
- Cubic polynomial in Bernstein Bases
- End point Interpolation
- $p(0) = b_{0}$
- $p(1) = b_{3}$
- The tangent vectors to the curve at the end points are coincident with the first and last edges of the control point polygon
- $p'(0) = 3(b_{1} - b_{0})$
- $p'(1) = 3(b_{3} - b_{2})$
Bezier Curve
De Casteljau Algorithm(드 카스텔조 알고리즘)
- Alternative way for evaluating a point on a Bezier Curve
- Multi-Linear construction
- Six times of linear interpolations
|
|
More Information
- Khan Academy : https://ko.khanacademy.org/partner-content/pixar/animate/parametric-curves/v/animation7
728x90
그리드형(광고전용)
'Computer Graphics' 카테고리의 다른 글
[Computer Animation] 애니메이션을 제작할 때 도움이 될 만한 사이트 (0) | 2022.06.23 |
---|---|
[Computer Animation] Quaternion Catmull-Rom Spline (0) | 2022.05.01 |
[Computer Animation] B-Spline (0) | 2022.05.01 |
[Computer Animation] Natural Cubic Spline (0) | 2022.05.01 |
[Computer Animation] Catmull-Rom Spline (0) | 2022.05.01 |
[Computer Animation] Bezier Curve & Bezier Spline (0) | 2022.05.01 |
[Computer Animation] Keyframing and Splines (0) | 2022.05.01 |
[Unreal Engine 4] 블루프린트 클래스(Blueprint Class)에 Static Mesh 연결하기 (0) | 2022.04.24 |