728x90
Bezier Curve & Bezier Spline
Basic Functions
- A linear space of cubic polynomials
- Monomial basis (t3,t2,t1,t0
- x(t)=a3t3+a2t2+a1t+a0
- The coefficients ai do not give tangible(유형의) geometric meaning.
- Monomial basis (t3,t2,t1,t0

Bezier Control Points
- Control Points
- b0,b1,b2,b3
- Demo
Canvas Bézier Curve Example
blogs.sitepointstatic.com
Bezier Curve(베지어 곡선)
- Cubic polynomial in Bernstein Bases(번스타인 기초)
- p(t)=b0B30(t)+b1B31(t)+b2B32(t)+b3B33(t) (0≤t≤1)
- Bernstein Basis Functions

Cubic Bernstein Basis Functions

Bernstein Basis Functions

- p(t) is a linear combination of points b0,b1,b2, and b3

- Derivative(미분) of p(t)

Properties of Cubic Beizer Curves
- End point interpolation
- p(0)=b0
- p(1)=b3
- The tangent vectors to the curve at the end points are coincident with the first and last edges of the control point polygon.
- p′(0)=3(b1−b0)
- p′(1)=3(b3−b2)

- Invariance under Affine Transformation
- Partition of unity of Bernstein Basis functions
- The curve is contained in the Conven Hull of the control polygen
- Variation Diminishing
- The curve in 2D space does not oscillate about any straight line more often than the control point polygon.

Bezier Spline
Beizer Splines
- When four key points and tangent conditions are given,

What is the First Bezier Curve?

First Bezier Curve?



Bezier Spline

728x90
'Computer Graphics' 카테고리의 다른 글
[Computer Animation] De Casteljau Algorithm (0) | 2022.05.01 |
---|---|
[Computer Animation] B-Spline (0) | 2022.05.01 |
[Computer Animation] Natural Cubic Spline (0) | 2022.05.01 |
[Computer Animation] Catmull-Rom Spline (0) | 2022.05.01 |
[Computer Animation] Keyframing and Splines (0) | 2022.05.01 |
[Unreal Engine 4] 블루프린트 클래스(Blueprint Class)에 Static Mesh 연결하기 (0) | 2022.04.24 |
[Unreal Engine 4] 새로운 월드 생성 & 기본 환경 설정 (0) | 2022.04.16 |
[Computer Animation] Slerp(Spherical Linear Interpolation) (0) | 2022.04.10 |