별의 공부 블로그 🧑🏻‍💻
728x90
728x170

Slerp(Spherical Linear Interpolation)

Interpolation betwee two orientations, $o_{a}$ and $o_{b}$?

  • $o_{a}$ and $o_{b}$ can be represented by 
    • Euler-angles
    • 3x3 matrices
    • quaternions
  • How can them be interpolated?
  • Is the linear interpolation applicable?

 

When the axis-angle is known, $o_{a} → o_{b}$

 

Rotation between two orientations?

  • Rotation between two SO(3) matrices, $m_{a}$ and $m_{b}$
    • $m_{r} = m_{b}m_{a}^{-1}$
  • Rotation between two quaternions, $q_{a}$ and $q_{b}$
    • $q_{r} = q_{b}q_{a}^{-1}$

 

Quaternion → Axis-Angle

 

Rotation Matrix → Axis-Angle

 

Interpolation $m_{a} → m_{b}$

 

 

Interpolation $q_{a} → q_{b}$

 

Alternative Method

 

 

Quaternion Slerp

2D Complex Number Form

 

2D Spherical Interpolation

 

Spherical Linear Interpolation

  • SLERP [Shoemake 1985]
    • Linear Interpolation of two quaternions

 

Antipodal Equivalence Problem

 

  • In gerneral, the shorter pass is better
  • You should test both $q_{a}$ and $-q_{a}$ , and choose one

 

Rotation Matrix vs. Unit Quaternion

  • Equivalent in many aspects
    • No singularity
    • Exp & Log
    • Special tangent space
  • Why quaternions?
    • Fewer parameters
    • Simpler algebra
    • Easy to fix numerical error
  • Why rotation matrices?
    • One-to-one correspondence
    • Handle rotation and translation in a uniform way
      • Eg) 4x4 homogeneous matrices

 

728x90
그리드형(광고전용)
⚠️AdBlock이 감지되었습니다. 원할한 페이지 표시를 위해 AdBlock을 꺼주세요.⚠️


📖 Contents 📖